

APTM50DUM25T

Dual common source MOSFET Power Module
$$\begin{split} V_{DSS} &= 500V \\ R_{DSon} &= 25m\Omega \ max \ @ \ Tj = 25^{\circ}C \\ I_D &= 149A \ @ \ Tc = 25^{\circ}C \end{split}$$

Application

- AC Switches
- Switched Mode Power Supplies
- Uninterruptible Power Supplies

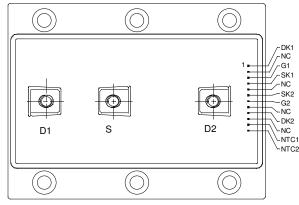
Features

- Power MOS V[®] MOSFETs
 - Low R_{DSon}
 - Low input and Miller capacitance
 - Low gate charge
 - Avalanche energy rated
 - Very rugged
- Kelvin source for easy drive
- Kelvin Drain for VDS monitoring
 - Very low stray inductance
 - Symmetrical design
 - M5 power connectors
- Internal thermistor for temperature monitoring
- High level of integration

Benefits

- Outstanding performance at high frequency operation
- Direct mounting to heatsink (isolated package)
- Low junction to case thermal resistance
- Solderable terminals for signal and M5 for power for easy PCB mounting

Absolute maximum ratings


Symbol	Parameter		Max ratings	Unit	
V _{DSS}	Drain - Source Breakdown Voltage		500	V	
т	Continuous Drain Current $T_c = 2$		149		
I _D	Continuous Drain Current	$T_c = 80^{\circ}C$	111	А	
I _{DM}	Pulsed Drain current		300		
V _{GS}	Gate - Source Voltage		±30	V	
R _{DSon}	Drain - Source ON Resistance		25	mΩ	
P _D	Maximum Power Dissipation $T_c = 25^{\circ}C$		1250	W	
I _{AR}	Avalanche current (repetitive and non repetitive)		149	А	
E _{AR}	Repetitive Avalanche Energy		30	mJ	
E _{AS}	Single Pulse Avalanche Energy		1300	111J	

CAUTION: These Devices are sensitive to Electrostatic Discharge. Proper Handing Procedures Should Be Followed.

DK1 DK5 \bigcirc 0 Q1 Q2 G1 G2 \bigcirc 0 \bigcirc 0 SK2 SK1 S NTC2 NTC1 () \cap

D 1

D2

Electrical Characteristics All ratings $@T_j = 25^{\circ}C$ unless otherwise specific					cified	
Symbol	Characteristic	Test Conditions	Min	Тур	Max	Unit
BV _{DSS}	Drain - Source Breakdown Voltage	$V_{GS} = 0V, I_D = 500 \mu A$				V
I _{DSS}	Zero Gate Voltage Drain Current	$V_{GS} = 0V, V_{DS} = 500V$ $T_j = 25^{\circ}$	C		300	
	Zero Gale Voltage Drain Current	$V_{GS} = 0V, V_{DS} = 400V$ $T_j = 125$	°С		2000	μA
R _{DS(on)}	Drain – Source on Resistance	$V_{GS} = 10V, I_D = 74.5A$			25	mΩ
V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_D = 8mA$	2		4	V
I _{GSS}	Gate – Source Leakage Current	$V_{GS} = \pm 30 \text{ V}, V_{DS} = 0 \text{ V}$			±250	nA

Dynamic Characteristics

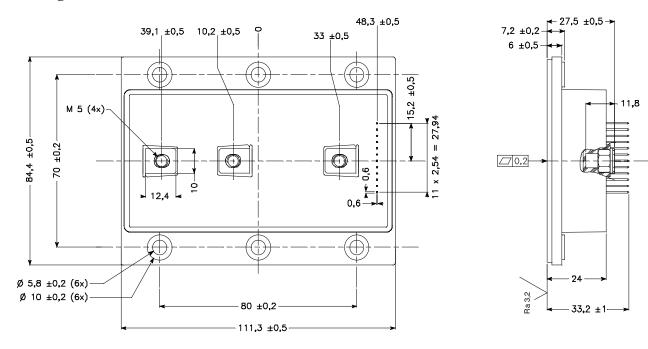
Symbol	Characteristic	Test Conditions	Min	Тур	Max	Unit
C _{iss}	Input Capacitance	$V_{GS} = 0V$		29.6		
C _{oss}	Output Capacitance	$V_{\rm DS} = 25 V$		4		nF
C _{rss}	Reverse Transfer Capacitance	f = 1MHz		1.6		
Qg	Total gate Charge	$V_{GS} = 10V$		1200		
Q_{gs}	Gate – Source Charge	$V_{Bus} = 250V$		200		nC
Q_{gd}	Gate – Drain Charge	$I_{\rm D} = 149 \rm A$		560		
T _{d(on)}	Turn-on Delay Time	Resistive Switching		12		
T _r	Rise Time	$V_{GS} = 15V V_{Bus} = 250V I_D = 149A R_G = 0.22 \Omega$		10		
T _{d(off)}	Turn-off Delay Time			50		ns
$T_{\rm f}$	Fall Time			8		

Source - Drain diode ratings and characteristics

Symbol	Characteristic	Test Conditions		Min	Тур	Max	Unit
Is	Continuous Source current	$Tc = 25^{\circ}C$				149	А
	(Body diode)		$Tc = 80^{\circ}C$			111	Л
V _{SD}	Diode Forward Voltage	$V_{GS} = 0V, I_S = -149A$				1.3	V
t _{rr}	Reverse Recovery Time	$I_{s} = -149A, V_{R} = 250V$ $di_{s}/dt = 800A/\mu s$			510		ns
Q _{rr}	Reverse Recovery Charge	$I_{s} = -149A, V_{R} = 250$ $di_{s}/dt = 800A/\mu s$)V		80		μC

Thermal and package characteristics

Symbol	Characteristic			Min	Тур	Max	Unit
R _{thJC}	Junction to Case					0.1	°C/W
V _{ISOL}	RMS Isolation Voltage, any terminal to case t =1 min, I isol<1mA, 50/60Hz			2500			V
T _J	Operating junction temperature range			-40		150	
T _{STG}	Storage Temperature Range			-40		125	°C
T _C	Operating Case Temperature			-40		100	
Torque	Mounting torque	To heatsink	M5	2		3.5	N.m
	Mounting torque For terminals M5		M5	2		3.5	19.111
Wt	Package Weight				550	g	



Temperature sensor NTC

Symbol	Characteristic	Min	Тур	Max	Unit
R ₂₅	Resistance @ 25°C		68		kΩ
B 25/85	$T_{25} = 298.16 \text{ K}$		4080		K
	R				

 $R_{T} = \frac{R_{25}}{\exp\left[B_{25/85}\left(\frac{1}{T_{25}} - \frac{1}{T}\right)\right]}$ T: Thermistor temperature R_T: Thermistor value at T

Package outline

APT reserves the right to change, without notice, the specifications and information contained herein

APT's products are covered by one or more of U.S patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. U.S and Foreign patents pending. All Rights Reserved.